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Abstract 

The adoption of geospatial technologies is vital for improving the efficiency and 

accuracy of agricultural crop monitoring. This study examines the implementation 

of geospatial agricultural monitoring systems through interviews with four units 

from three institutions in Indonesia that develop these systems. The interviews 

focused on system maturity management and technical processing techniques, 

including data input, methods, preprocessing, validation, and output. Results show 

that three systems, SISCrop, Simotandi, and Mixed Method, exhibit Level 3 

maturity in system management (Standardized), while IDMAI SIMURP is still at 

Level 2 (Managed), indicating in the development phase. All institutions follow 

standard preprocessing protocols, though variations exist in data input, applied 

methods, and output designs, reflecting tailored approaches. Geospatial systems 

demonstrate significant potential to optimize resource use. The analysis of the 

technical processing technique reveals significant differences in satellite sources, 

spatial and temporal resolutions, classification schemes, and statistical granularity. 

To advance their implementation, this study recommends a unified data and policy 

framework to align classification standards, align temporal outputs, and establish a 

centralized platform that integrates agricultural data for real-time sharing and use. 

Also recommended are policy moves designed to clear up ownership and 

governance issues. 

© The Author 2025. 

Published by ARDA. 

Keywords: Geoinformatics technologies, Policies and standards, System maturity 
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1. Introduction  

Monitoring agricultural crops is an essential tool for guaranteeing food security, ensuring that productivity can 

be maximized, and that agricultural practices are sustainable. The crop monitoring methods that rely on 

observation made in the field and sampling are slow, labor-intensive, and costly. They also tend to generate 

results that can be inaccurate and easily misleading. The recent rapid development of geospatial technologies, 

however, enables new solutions that overcome the existing crop monitoring challenges. Geospatial systems that 

https://creativecommons.org/licenses/by/4.0/
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are combined with satellite imagery and are capable of remote sensing make it possible to efficiently monitor 

the landscape of an agricultural field on scale. They also support decisions concerning that field, which can be 

described as data-driven and as having the characteristics of sustainable progress [1], [2]. 

Using geospatial systems in agriculture doesn't lessen existing hurdles for successful implementation. Four units 

at three different institutions in Indonesia developed geospatial agricultural monitoring systems. But their 

different technical approaches—both to the preprocessing of the data that they use as inputs and to the outputs 

of their systems—create the kinds of difficulties that you might expect when trying to choose a reference output. 

These difficulties make it tough to create standardized data integration protocols. In Indonesia, the "One Data" 

policy faces significant challenges because of this issue [3]. 

The four main crop monitoring systems have different approaches and different strengths. The Agricultural 

Land Resources Instrument Standard Testing Center under the Ministry of Agriculture (BBPSI SDLP 

Kementan) does regional-level monitoring and provides a reliable way to understand crop conditions at a 

regional scale (as opposed to just obtaining satellite data and trying to understand it for the same region). This 

is done by way of something they call Sistem Informasi Standing Crop (SISCrop)1, which uses Synthetic 

Aperture Radar (SAR) data, particularly from Sentinel-1, to obtain this reliable information. Agricultural Data 

and Information Systems Center of the Ministry of Agriculture (Pusdatin Kementan) enhances this capability 

with Rice Planting Monitoring Information System (Sistem Informasi Monitoring Pertanaman 

Padi/Simotandi)2, incorporating multi-resolution monitoring that combines SAR and optical data sources such 

as Landsat-8, enabling more detailed and multi-level analyses.  

The Ministry of National Development Planning of the Republic of Indonesia (Bappenas) uses its Integrated 

Digital Monitoring for Agriculture and Irrigation for Strategic Irrigation Modernization and Urgent 

Rehabilitation Project (IDMAI SIMURP) system to support planning and policy development through a 

strategic-level approach that integrates optical and SAR data. Finally, Statistics Indonesia (BPS) employs its 

Mixed Method system for statistical monitoring at a national scale, offering essential reporting on crop 

conditions and trends for governmental and public use.  

Data collection, classification, and analysis remain fragmented because each system operates independently. 

The systems lack interoperability because they use different temporal outputs, spatial resolutions, and 

classification systems. This study identifies that Indonesia needs an integrated system to improve its crop 

monitoring operations and data exchange and enhance its overall system effectiveness. The country needs to 

solve this fragmentation problem to boost its agricultural resilience and food security approaches. Lack of 

agreed standards for interoperability is one of the challenges of geospatial systems that support agriculture. The 

data grows more accessible, although most data remain prone to errors in various spatial formats with different 

metadata at diverse times and spaces. This can make the data unusable, prevent data integration, and hinder 

broader and more integrated analysis [4], [5]. 

Due to the differences in data inputs and methodologies, crop monitoring systems in Indonesia face challenges 

in meeting the coherence and integration requirements. The systems operate from different satellite sources that 

include Sentinel-1, Sentinel-2, and Landsat-8 with different spatial resolutions and revisit times. The systems 

also produce data at different frequencies, including 12-day and monthly intervals, and they have different 

validation scales at the regional and national levels. Different data aggregation and system analysis efficiency 

create barriers that decrease crop monitoring effectiveness. 

Data outputs and statistical methodologies show no interoperability between them. The systems employ 

different classification schemes for rice growth phases and non-rice categories with varying granularities and 

definitions, which hinder integration and comparison. Statistical analysis occurs at different administrative 

 
1 http://scs1.bsip.pertanian.go.id/ 
2 https://simotandi.pertanian.go.id/  

http://scs1.bsip.pertanian.go.id/
https://simotandi.pertanian.go.id/
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levels, starting from villages up to provinces, which makes output alignment complex. The lack of 

standardization makes stakeholders unable to unite system strengths for obtaining an integrated view of 

Indonesian agricultural conditions. 

Amplifying technical problems are gaps in policy that prevent organizations from working together effectively. 

We do not currently have policies that provide enough detail on how to share data or who should govern it, 

which leads to poorly managed and duplicated resources. Policies that provide a common set of guidelines 

would also help us develop a more unified data platform for agriculture, one that extends across a much larger 

share of the innovation space, thus yielding much greater efficiency improvement. To do all this requires a plan. 

This research analyzes geospatial agricultural monitoring systems in Indonesia by assessing system maturity 

and technical processing methods across four different systems with an emphasis on detailed investigation. It 

identifies factors responsible for the variability of system outputs and delivers specific remedies to improve data 

standardization and enhance system integration that will achieve better consistency, interoperability, and 

scalability of geospatial technologies used for agricultural monitoring across the archipelago. This study fills a 

critical gap by integrating two normally separate lenses, organizational maturity (GMA OS) and end-to-end 

technical workflows (qualitative TKT matrix), and visualizing them together in a two-dimensional positioning 

map. A review of the geospatial-agriculture literature shows no earlier study that integrates these frameworks 

into one evaluation model; therefore, the dual-framework design represents a methodological innovation with 

clear policy significance. The investigation also makes a key contribution to the development of a unified data 

and policy framework that will standardize data processing, improve system integration, and achieve better 

accuracy in the "One Data" framework supporting sustainable agriculture in Indonesia. 

2. Background 

This section presents a summary of geoinformatics agricultural information systems in Indonesia and other 

countries that form the context of this research. 

2.1. Geoinformatics agricultural monitoring information systems in Indonesia 

Geoinformatics Agricultural Monitoring Information Systems (GAMIS) in Indonesia has been found to be very 

useful in improving agricultural productivity and encouraging sustainable agriculture. These systems have 

greatly improved the farmers' capabilities and increased rice yields, with better internet connectivity, user-

friendly, and accurate tools [6]. Furthermore, the Integrated Cropping Calendar Information System has 

provided farmers with climate-adaptive strategies through the provision of specific information on planting time 

and crop management [7]. 

GIS and Remote Sensing technologies are being used more in agriculture for the estimation of crop yields, 

assessment of soil fertility, and pest management, thus enabling more informed and data-driven decision making 

[5]. The effectiveness of information and communication technologies, such as Tani Hub Android-based 

platforms and short message service (SMS) based monitoring systems in the distribution of agricultural 

information, also points to the role of technology [8]. 

While GAMIS has many benefits, its full potential is usually restricted by factors like poor access to technology 

and the demanding nature of constantly needing to update practices in the field [6], [7]. A way to overcome 

these challenges would be to significantly ramp up training for the system's users and, further, to improve how 

well these systems can be integrated with local conditions. Together, these would likely push adoption and 

efficiency gains much further than currently seems possible [7]. 

In the discussion of One Data Indonesia, particularly concerning rice data, the need for modernizing statistical 

production has been emphasized, incorporating big data, small area estimation, and geospatial statistics. 

Meanwhile, statistical development currently faces several challenges, including the increasing demand for fast 

and diverse data, changes in societal structures, technological advancements, and the broader utilization of 

statistical data. BPS periodically releases national rice production data using the Area Sampling Frame 
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(Kerangka Sampel Area, KSA) method. KSA is a sample survey (random sampling) where the population 

consists of rice fields and all potential rice-growing areas across Indonesia. It utilizes a sampling frame and 

sampling units in the form of area segments—each measuring 300 m × 300 m with nine observation points. 

Currently, 25,577 active segments are used, covering 230,193 observation points spread across 38 provinces, 

with 6,544 field officers conducting data collection. Field observations are carried out simultaneously during 

the last seven days of each month, with a cost of IDR 120,000 or USD 7.18 per segment. However, KSA does 

not provide spatially explicit information; instead, it presents data in a point-based (sampling point) or tabular 

format without detailed geospatial representation. This limitation makes it challenging to directly integrate KSA 

data with geospatial analysis for mapping or visualization purposes. 

2.2. Geoinformatics agricultural monitoring information systems in other countries 

Geoinformation-based crop monitoring systems have been adopted by multiple regions and countries, as in 

Indonesia. Notable examples include: The United States, through the United States Department of Agriculture 

(USDA) National Agricultural Statistics Service, implemented CropScape3 [9]. CropScape, officially deployed 

since 2012, provides interactive maps for agricultural land cover data across the United States. It is designed to 

interactively and intuitively visualize, query, disseminate, and analyze historical and current Crop Data Layer 

(CDL) data via a web browser. The European Union (EU), through its Joint Research Centre (JRC), has been 

implementing the Monitoring Agricultural Resources (MARS) system since 1988 [10]. While initially limited 

to EU territories, the system expanded globally in 2016. Currently, MARS has integrated the AGRI4CAST 

project, which focuses on crop yield monitoring and forecasting. Through MARS, detailed farmland maps can 

be generated and utilized for crop vegetation monitoring. The system also provides seasonal yield forecasts for 

major European crops and predicts the short-term impacts of meteorological events on crop productivity. China 

implements CropWatch, a comprehensive system that generates various crop monitoring indicators, including 

crop production estimates, crop condition assessments, drought monitoring, crop planting proportions, and 

planting intensity indices [11], [12]. While initially focused on China, CropWatch has evolved to provide crop 

condition and production information at a global scale. Similarly, India utilizes the Forecasting Agricultural 

output using Space, Agrometeorology and Land-based observations (FASAL) system to predict crop production 

before harvest through remote sensing data [13]. This initiative aims to provide national-level production 

forecasts for major crops, including rice, wheat, cotton, sugarcane, rapeseed/mustard, rabi sorghum, winter 

potatoes, and jute. The program integrates satellite data, weather observations, crop information, and ancillary 

data to model and predict seasonal crop growth. 

2.3. Related study 

A literature review was conducted to identify suitable frameworks for this study. A comparative analysis was 

performed on five frameworks using four evaluation criteria, with a scoring system adapted from a previous 

study [14]. The scoring was determined through consensus among the research team before assessing the 

selected agricultural information systems. In this scheme, the scoring is divided into four levels: “N” (0-25% 

suitability), “P” (26-50% suitability), “L” (51-75% suitability), and “F” (76-100% suitability) indicate the 

degree of alignment between each framework and the research requirements. 

Table 1. Comparative analysis of frameworks adapted from previous research 

Model ID Fitness for Purpose Completeness 
Objectivity and 

Assessment Method 
Complexity 

M1 [15] L P L P 

M2 [16] L P L P 

M3 [17], [18] L L L F 

M4 [19] L L L L 

M5 [20] P P P L 

 
3 https://nassgeodata.gmu.edu/CropScape/ 

https://nassgeodata.gmu.edu/CropScape/
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M1 is the Capability Maturity Model Integration (CMMI) framework [15], which focuses on process 

improvement and capability maturity and organizations. While it provides a structured approach to evaluation 

system management, it lacks comprehensive coverage of essential geospatial assessment components. M2 is the 

Sistem Pemerintahan Berbasis Elektronik (SPBE) framework [16], designed to evaluate e-Government systems 

in Indonesia. Although it includes elements of digital governance, it is not specifically designed for geospatial 

monitoring systems. M3 is the Geospatial Management Assessment by Ordnance Survey (GMA OS) [17], [18], 

which is most relevant for evaluating agricultural information systems. Despite its relative suitability, the 

complexity of GMA OS is considered an alternative framework with lower resource demands that may achieve 

similar outputs. M4 is the GIS Capability Maturity Model by Urban and Regional Information Systems 

Association (URISA) [19], which focuses on evaluating GIS, but making it less technical in processing, and it’s 

more complex than M3. M5 is the Data Management Body of Knowledge (DMBOK) framework emphasizes 

data governance and management best practices. While it provides structured guidelines, the objective is less 

suitable for approaching geospatial systems evaluations.  

However, none of the evaluated frameworks fully covered the technical processing aspects of agricultural 

monitoring systems. To fill this gap, our study proposes a novel dual-framework configuration that, to our 

knowledge, has not been applied in earlier geospatial-agriculture literature: we pair GMA OS for organizational 

maturity with a qualitative TKT-based matrix for end-to-end technical workflows, allowing both dimensions to 

be visualized in a single positioning map. This combined approach ensures a comprehensive evaluation that 

covers both system management and technical processing aspects, providing a more holistic framework for 

agricultural monitoring system assessment. 

Technology Readiness Level (TRL), known locally as Tingkat Kesiapterapan Teknologi (TKT), is a 1–9 scale 

used to assess the maturity of a technology—from early-stage research to full deployment [21], [22]. Originally 

developed by NASA to map the technology maturation process and guide development stages [21], TKT was 

formally adopted in Indonesia through Regulation No. 42/2016 to support the systematic evaluation of 

technologies for adoption by government, industry, or the public. The scale is often grouped into 4 clusters: 

Fundamental Research (levels 1-2), Research and Development (levels 3-5), Pilot and Demonstration (levels 6-

8), and Early Adoption (level 9) [23]. TRL is widely applied to assess technology maturity across various 

domains, including cross-sector co-creation [24], biosecurity and plant pest detection [25], sustainable 

agricultural intensification [26], and geoscience and mineral resources, where it can be applied to long-term, 

continuous research projects [27]. These studies demonstrate that, despite differing contexts, TRL remains a 

relevant expert-driven framework to guide technology adoption and development. This study applies the TKT 

framework to help visualize the relative maturity of different crop-monitoring systems using a positioning map. 

By combining TKT levels with management readiness scores, each platform can be placed in a two-dimensional 

space, offering an intuitive comparison of technical and organizational progress and helping pinpoint areas for 

targeted improvement. 

3. Research method  

This study follows a qualitative, embedded case study design to evaluate the implementation outcomes of 

geospatial agricultural monitoring systems. Data were gathered from semi-structured interviews (July – August 

2024) with at least two key informants who were system developers, project managers, and data analysts-

selected using purposive sampling. This was supported by document review and limited field observations in 

Subang, Karawang, and Garut. Figure 1 illustrates the research design, which consists of three stages. 

Interview guides covered two lenses: 

1. Management maturity - 16 domains adapted from the GMA OS framework [17]: data capture and 

maintenance, data management, data sharing, geospatial technology, corporate governance structure, 

corporate strategy, project management, national contribution, stakeholder engagement, data standard, 
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product and service portfolio, product and service creation, quality management, resource situation, 

supply chain management, operational management. 

2. Technical processing, including: 

• Data Input: Types of data sources used (e.g., satellite imagery, ground sensors) and the frequency 

of data updates. 

• Methods: Analytical and computational techniques applied, including models or algorithms for 

data processing. 

• Preprocessing: Data cleaning, normalization, and integration protocols to ensure data quality and 

compatibility. 

• Output Generation: Formats and usability of the final outputs, such as maps, dashboards, or reports 

for stakeholders. 

 

Figure 1. Research design 

3.1.1. Data analysis 

Data collected from participants was analyzed using approaches: 

• Management maturity was qualitatively rated by mapping each participant’s structured interview 

responses onto the four categorical levels of the GMA OS framework. 

• Technical readiness was classified qualitatively with the nine-level TKT scale and used to plot the 

Integrated Comparative Positioning Map. An embedded-expert consensus—grounded in the technical-

processing recapitulation (inputs, preprocessing, modelling, validation, outputs) and supporting 

artefacts—reviewed each system and agreed on a single narrative TKT label per platform; these labels 

function solely as inputs for the map. 

• Field validation survey, using comparative analysis conducted on two closely spaced dates, comparing 

the rice growth phases from the crop monitoring system product information with the actual phases 

observed in the field, calculating the percentage of rice growth phases that matched between the 

system’s analysis and actual field conditions.  

3.2. Stage 3: Recommendation 

The theoretical framework presented in Figure 2 serves as the foundation for developing recommendations for 

the implementation of agricultural crop monitoring systems. It integrates several key components, including 

regulatory frameworks, which establish the legal and institutional context for data governance and remote 

sensing activities. Related works and benchmarking provide insights from previous studies and best practices, 

while crop monitoring system management assesses the geospatial maturity of existing systems.  
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 Figure 2. Theoretical framework 

Subject matter experts (SMEs) validate the analysis results. They do this through focus group discussions 

(FGDs) and technical meetings with Kementan, BPS, and Bappenas's technical teams. The FGD is a method of 

collective knowledge and opinion gathering from a group of experts on the relevant subject. The initial FGD 

works to determine the main problem(s) along with possible answers before the second FGD concentrates on 

developing and clarifying the concepts generated in the first FGD. The expected outcome of these two FGD 

validation stages, coupled with input from various parties, is a set of comprehensive recommendations ready 

for implementation. 

4. Results and discussion  

The results and discussion of the study are presented in this section. The discussion begins with the result of the 

management systems' maturity assessment, which indicates the level of maturity attained in the management 

and operational oversight of the systems. A summary of the technical processing methods employed by each 

system follows. Finally, the field validation results are presented, which verify the accuracy and relevance of 

the findings and provide a better picture of how the systems function in actual field conditions. 

4.1. System management maturity 

The GMA OS framework consists of 16 assessment components, each represented by a single question, resulting 

in a total of 16 questions in the questionnaire. Each question provides four answer choices, corresponding to the 

four maturity levels of each component. The definitions for these levels are presented in Table 2. This study 

adopts the level nomenclature from the Capability Maturity Model Integration (CMMI) framework [15], [28] 

with slight modifications, merging Levels 3 and 4 of CMMI into a single level to align with the four-level 

structure of GMA OS.  

Table 2. Maturity level 

Score Level Definition 

1 Initial 
Processes are irregular, reactive, dependent on individuals, and minimally 

documented. 

2 Managed Processes are organized at a basic level, repeatable, and minimally documented. 

3 Standardized Processes are well-documented and controlled at each stage of implementation. 

4 Optimized 
Processes are optimized with continuous improvement and innovation-driven 

approaches. 
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The assessment findings for 16 GMA OS framework components appear in Table 3 for the four crop monitoring 

systems: SISCrop, Simotandi, IDMAI SIMURP, and Mixed Method. The assessment divides each component 

into four distinct maturity levels, which include Initial (Level 1), Managed (Level 2), Standardized (Level 3), 

and Optimized (Level 4). The systems SISCrop, Simotandi, and Mixed Method reached Standardized (Level 3) 

operational maturity. Their processes are standardized, well-documented, and consistently implemented, 

reflecting readiness to support institutional objectives effectively. On the other hand, IDMAI SIMURP was 

assessed at Managed (Level 2), which suggests that while some processes are organized and repeatable, they 

are not yet fully standardized or stable. This indicates that IDMAI SIMURP is still in the development phase 

and requires further improvements to achieve operational maturity. Overall, the results show that most of the 

systems evaluated are functioning well, with only one system needing significant enhancements to reach a 

comparable level of maturity. 

Table 3. Summary of GMA OS Assessment 

No Domain 

Level 

SISCrop Simotandi 
IDMAI 

SIMURP 

Mixed 

Method 

1 
Data capture and maintenance 

process 
Standardized Managed Initial Optimized 

2 Data management Standardized Managed Managed Optimized 

3 Data sharing Standardized Managed Initial Managed 

4 Geospatial technology Managed Standardized Initial Optimized 

5 Corporate governance structure Standardized Managed Managed Optimized 

6 Corporate strategy Standardized Standardized Standardized Standardized 

7 Project management Standardized Managed Standardized Optimized 

8 National contribution Standardized Managed Managed Optimized 

9 Stakeholder engagement Standardized Standardized Optimized Managed 

10 Data standard Standardized Standardized Managed Optimized 

11 Product and service portfolio Standardized Standardized Managed Managed 

12 Product and service creation Standardized Standardized Managed Standardized 

13 Quality management Standardized Managed Managed Optimized 

14 Resource situation Standardized Standardized Managed Optimized 

15 Supply chain management Standardized Standardized Standardized Optimized 

16 Operational management Standardized Managed Standardized Standardized 

Summary Level Standardized Standardized Managed Standardized 

4.2. Technical processing technique 

The technical processing analysis reviews the methodologies and workflows employed by each crop monitoring 

system, focusing on data input, preprocessing protocols, analysis protocols, output, and validation techniques. 

This analysis highlights the extent to which systems share standardized practices and leverage available 

geospatial technologies to support operational objectives. The following section presents the results of the 

technical processing review, emphasizing commonalities and differences across the systems. 

Table 4. Input data 

Input Data SISCrop Simotandi IDMAI SIMURP Mixed Method 

Remote 

sensing data 
SAR optic SAR optic SAR SAR 

Satellite Sentinel 1 Landsat 8 Sentinel 1 Sentinel 2 Sentinel 1 Sentinel 1 
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Input Data SISCrop Simotandi IDMAI SIMURP Mixed Method 

Spatial 

resolution 
10 m 25 m 10 m 20 m 10 m 20 m 

Spectral 

channel 
VV, VH NIR, SWIR1 VH 11 bands VV, VH VV, VH 

Data 

periodic 
15 days 16 days 12 days 15 days 15 days 12 days 

Validation Regional 3 districts National 

Secondary data paddy field map 
paddy field map, rainfall 

rate data, DEM 
paddy field map 

Source: The data displayed was obtained based on the results of interviews with key informants from each system 

development institution. 

Table 4 highlights the input data sources and characteristics used by crop monitoring systems across various 

institutions. SISCrop and Simotandi rely on Sentinel-1 SAR data, with PUSDATIN further enhancing its 

monitoring capabilities by integrating Landsat-8 optical imagery. IDMAI SIMURP also incorporates both SAR 

and optical data (e.g., Sentinel-2), while Mixed Method relies solely on Sentinel-1 for its statistical outputs. 

Spatial resolutions vary, with SAR-based systems achieving 10 m resolution, while Landsat-8 data used by 

Simotandi operates at 25 m resolution, and Sentinel-2 data at 20 m. Validation approaches also differ, with 

Kementan systems conducting regional-level validation to ensure localized accuracy, whereas BPS applies 

nationwide validation protocols, prioritizing national-scale reliability over regional detail. 

Table 5. Recapitulation of pre-processing, method, analysis, output, and validation 

Component SISCrop Simotandi IDMAI SIMURP Mixed Method 

Pre-processing Optic Data 

Geometric 

correction 

Not using optic 

data 

Ortho Ortho 

Not using optic data 

Radiometric 

correction 
ToA, BRDF Surface Reff. 

Spatial Filtering - Median 

Temporal 

Filtering 
Median, Avg Median 

Spectral Indices NIR, SWR1 NDVI, EVI, NDWI 

Temporal Indices 30 series - 

Missing Data 

Filling 

Linear interpolation, 

quadratic 

Interpolation, 

Extrapolation 

Pre-processing SAR Data 

Geometric 

correction 
Ortho Ortho Ortho Ortho 

Radiometric 

correction 
 Gamma Naught Gamma Naught Sigma Naught 

Spatial Filtering  Lee 3x3 Refined Lee  

Spectral Indices VH, RVI VH RVI, VV, VH  

Temporal Indices  Temporal 10 series Mean, STDev  

Missing Data 

Filling 
Previous period Previous period Interpolation Whittaker Imputation 
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Component SISCrop Simotandi IDMAI SIMURP Mixed Method 

Analysis Method 

Classification 

approach 

Machine 

Learning 
Analytic Machine Learning Machine Learning 

Machine 

Learning Method 
 - RF, SVM, Xboost 

Gboost, Catboost, 

LGBM. 

RF 

Output Data 

Periodic output 15 days 12/16 days 15 days Monthly 

Class output 

2 non-Paddy 

classes, 4 

classes of Rice 

phase 

3 non-Paddy classes, 

6 classes of Rice 

phase 

0 non-Paddy classes 

4 classes of the Rice 

phase 

4 non-Paddy classes 

3 classes of the Rice 

phase 

Statistical 

analysis 
Disctrict 

Village, District, 

Province 

Village, District, 

Province, irrigation 

area 

District, Province 

Validation 

Field verification 3000 samples 1111 samples not done 

36 point x 

26 districts in 10 

provinces 

Accuracy ± 80-87 % 
80.3 % 

(for Landsat-8) 
- 85% (For Indramayu) 

Source: The data displayed was obtained based on the results of interviews with key informants from each system 

development institution. Accuracy figures were obtained directly from the developer institutions through confusion-matrix 

evaluation, but Overall Accuracy is used as the common benchmark. 

Table 5 outlines the preprocessing protocols for optical and SAR data across four crop monitoring systems.  All 

systems execute fundamental geometric and radiometric corrections to standardize imagery. Cluster analysis 

(uses basic statistical operations). Most systems (SISCrop, IDMAI SIMURP, and Mixed Method) perform 

machine learning on output from the previous task to classify rice growth phase and non-paddy areas. They 

differ in the type of machine learning they use and in the enormous variety of output that is produced. This 

variety is manifested in differences in periodicity, spatial scale, and other properties of the output.  The temporal 

frequency output illustrates a notable distinction between the systems. BPS creates month-to-month reports that 

fulfill statistical requirements but are inadequate for true real-time decision support. Kementan and Bappenas 

produce results on a far timelier basis, issuing their outputs at 12- to 15-day intervals—enough of a difference 

for time-sensitive monitoring. While SISCrop does split up non-rice classes in its own unique way, IDMAI, 

SISCrop SIMURP, and Mixed Method are far more alike than any of them are with BPS in terms of the statistical 

analysis levels they provide. While BPS focuses more on district and provincial levels, Kementan and Bappenas 

extend studies from the sub-district level all the way up to the provincial level. 

Every system has its unique strengths and weaknesses. SISCrop provides consistently weather-resistant 

monitoring, using SAR data, but it has a limited classification system. Simotandi has a very detailed 

classification system and performs in-depth, multi-level analysis. However, Simotandi's output is irregular, 

making system integration a challenge. IDMAI produces strategically multi-analytical outputs at a scale that 

makes them useful for agricultural policy decisions. However, the output frequency is a problem; IDMAI is 

simply not a dynamic monitoring system. The Mixed Method system produces output at the national level. Its 

governance is strong enough that the outputs are consistent. However, compared to some other systems, the 
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Mixed Method system outputs appear quite infrequently. In the next chapter, we will discuss how these systems 

can be integrated. 

4.2.1. Commonalities: Adherence to standard preprocessing protocols across all institutions 

A main observation from the technical processing evaluation demonstrates that all systems follow identical 

preprocessing procedures. The established protocols, which include geometric correction, radiometric 

correction, filtering, and the use of spectral and temporal indices, ensure that analysis data maintains consistent 

quality and comparability. The uniform data processing standards between institutions produce dependable 

results that enable better cross-system evaluations for improved decision-making in crop monitoring and 

management. 

4.2.2. Differences: Variability in data input, methods, and output designs 

The systems demonstrated different preprocessing protocols in their data input, processing methods, and output 

designs. The different classification methods that use machine learning algorithms such as Random Forest (RF) 

and Support Vector Machines (SVM), and analytical models result in multiple data analysis approaches. The 

output periodicity, along with the generated class types, shows differences that might reduce result 

comparability between systems. The system’s interoperability requires additional standardization of methods 

and outputs for better system integration. 

Table 6. Key technical differences 

Aspect SISCrop Simotandi IDMAI SIMURP Mixed Method 

Primary sensor SAR, Optical & SAR Optic & SAR SAR 

Spatial resolution 10 m 25 m & 10 m 10 - 20 m 20 m 

Classification approach VV, VH NIR, SWIR1 11 bands VV, VH 

Output frequency 15 days 16 days 15 days 12 days 

Reporting scale District 
Village, District, 

Province 

Village, District, 

Province 

District, 

Province 

Validation & accuracy 

3 000 field 

samples, 

OA 80–87 % 

1,111 samples, 

OA 80.3 % 
Not yet reported 

Indramayu, 

OA 85 % 

Source: The data displayed was obtained based on the results of interviews with key informants from each system development 

institution. Accuracy figures were obtained directly from the developer institutions through confusion-matrix evaluation, but 

Overall Accuracy is used as the common benchmark. 

4.3. Integrated comparative positioning of crop-monitoring systems 

A qualitative, expert-embedded approach was adopted to assess each system's Technology Readiness Level 

(TRL/TKT) on a nine-point scale. The nine TKT levels reflect a set of standardized criteria that a technology 

must satisfy to be categorized at a given level, as adapted from the European Space Agency’s (ESA) TRL 

handbook [29]. During structured consensus sessions, team members—each directly involved in developing or 

managing the systems—linked real-world artefacts and documentation to the formal descriptors in the TKT 

framework. This interpretive approach aligns with how TKT assessments are commonly applied in agro-

technology studies [26], [30]. 

Ratings were produced through an embedded-expert consensus: team members who design or operate the 

platforms jointly reviewed documentation, field artefacts, and validation results, then agreed on categorical 

placements. Using this framework, SISCrop and SIMOTANDI reached TKT 7, reflecting their advanced 

development status: both systems deliver validated outputs and have begun institutional scaling. IDMAI 

SIMURP scored TKT 6, indicating strong applied research maturity and policy-facing, hence one tier below 

full development. Mixed Method was scored TKT 5, although it shows strong management practices, its 

technical components are still undergoing model validation and have not yet been formally adopted nationwide. 
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Figure 3. Positioning map of Indonesian crop-monitoring systems plotted by management maturity (GMA-OS 

average) and technical readiness (TKT) 

All four systems occupy the top-right quadrant of our positioning map in Figure 3—classified as “Managed” 

for organizational readiness and at least “Intermediate” in technical maturity—demonstrating a common 

foundation for improving interoperability and scaling capacity. The map also points to specific priorities: 

strengthening Mixed Method’s technical hardening and SIMURP’s managerial consolidation. The use of TKT 

scales as narrative indicators in qualitative assessments is well-established in related research fields. Our 

approach aligns with this tradition, offering a clear, side-by-side snapshot of Indonesia’s crop-monitoring 

platforms while preserving the nuance of expert-led evaluation. 

4.4. Field validation survey 

The field-verification was conducted in three West Java districts—Subang (24–26 September 2024), Karawang 

(30 September–2 October 2024), and Garut (6–8 November 2024)—selected to encompass irrigated and rain-

fed lowlands as well as upland rice ecosystems, ensuring that every major agro-ecological zone and 

phenological phase of the rice crop was represented within the sample frame. Although the 2024 field validation 

survey was limited to West Java because of budget constraints, the same protocol will be extended to other 

provinces in the next funding cycle to capture a wider range of climatic and soil conditions. The field survey 

points used in this research are shown in Figure 4. All ground observations were collected by a team of remote-

sensing specialists who had followed a standard procedure for crop-monitoring validation. Their expertise and 

consistent methodology ensured reliable reference data for accurate assessment. 

 
(a) 

 
(b) 
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(c) 

Figure 4. Distribution of field survey points in (a) Subang, (b) Karawang, and (c) Garut 

The verification results show that all information systems need substantial accuracy improvements for further 

evaluation. The results indicate possible data quality problems that need better validation procedures. The 

system accuracy can be enhanced by evaluating data collection methods and through regular training and 

calibration, and by strengthening field validation procedures. The accuracy of crop monitoring systems will 

increase after implementing these improvements, thus delivering better benefits to farmers and land managers. 

5. Recommendation 

This section distils the study’s technical and organizational findings into concrete, regulation-anchored actions 

that enable one harmonized crop-monitoring ecosystem. The recommendation spells out what each regulation 

requires and who is responsible for making it happen. 

5.1. National Agricultural Reference Dataset (NARD): A unified training data backbone for model 

improvement 

For Artificial Intelligence (AI) to track crops accurately in Indonesia, the models need more than just lots of 

data—they need field samples that reflect the country’s many agro-ecological zones. To deliver that kind of 

performance nationwide, we propose a National Agricultural Reference Dataset (NARD) Repository, a shared 

archive of multi-sensor image chips and harmonized field surveys collected by Kementan, BPS, BRIN, and 

provincial offices. An open, country-wide corpus would cut model bias, enable continual re-training, and make 

AI crop monitoring reliable across Indonesia’s highly varied landscapes. Leveraging AI, remote sensing data 

can be utilized to generate rice growth phase maps, but this requires high-quality training data that is well-

distributed across Indonesia. The KSA rice dataset, collected monthly by BPS, can serve as a training dataset 

for identifying rice growth phases. By integrating KSA data with remote sensing in GEOAI, a more accurate 

rice growth monitoring system can be developed for Indonesia. 

5.2. Technical foundation and harmonized classification 

The pre-processing of remote sensing data already utilizes standardized algorithms; however, improvements in 

geometric and radiometric accuracy are necessary to align with the latest advancements. Standardized ready-to-

use data is essential for improving efficiency and consistency across crop monitoring systems [31], [32], [33]. 

A centralized approach, such as adopting a datacube model, could ensure that all necessary geospatial data—

pre-processed, organized, and readily accessible—meets the diverse needs of various stakeholders. This would 

eliminate redundancies, as institutions would no longer need to individually handle raw data, saving significant 

time and resources while maintaining data quality and accessibility [34]. In this effort, BRIN can play a key 

role in conducting research to define standardized data processing methods that align with the specific 

requirements of crop monitoring. 
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The various methods of classification, the application of machine learning and analytical techniques in disparate 

systems, and the employment of different machine learning algorithms underline the necessity of collaboration 

across disciplines. Each institution can achieve much more than it can alone in this area by pooling expertise 

and experimental results to form universal models or algorithms for all systems to use. This would guarantee 

not just standard output (including land cover and crop phase classification) from the different monitoring 

systems for any one moment in time, but also enhanced reliability of results across the board. 

5.3. Inter-agency operating model 

Figure 5 presents the Proposed Unified Strategy and Policy Implications through a five-layer ArchiMate view: 

Motivation, Strategy, Business, Application, and Technology. ArchiMate is used because of its standard, 

layered syntax to trace each legal driver straight down to the cloud node that implements it, giving both 

policymakers and engineers a common language. These five layers are sufficient: they capture everything from 

regulations and capabilities to agency roles and infrastructure.  

 

Figure 5. Proposed unified framework and policy implications 

We bundle Kementan, BPS, and Bappenas into a Primary Crop-Monitoring Stakeholders collaboration that 

owns ground-truth, statistics, and regulation planning. A second collaboration is BRIN, BIG, and Kominfo, 

which acts as Technical & Standards Enablers, hosting the cloud pipeline and maintaining spatial reference. 

Oversight remains with PAN-RB (Governance & Assurance). Arrows in the diagram connect each legal 

constraint directly to the Governance Cloud and HPC nodes, guaranteeing compliance and security controls. 

Regulations appear as Requirements or Constraints in the Motivation layer of Figure 5, linking legal mandates 

to the cloud nodes that run data workloads. Each regulation is described in detail in Table 7. 
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Table 7. Regulatory drivers in the ArchiMate Motivation layer  

Motivation Element Regulation Key obligation/constraint 

Principle – Open Data 
Law No. 14/2008 on Public 

Information Disclosure 

Public‐sector datasets must be released 

unless specifically classified. 

Requirement – Pre-

processing Standard 

Government Regulation (GR) No. 

11/2018 on the Conduct of 

Remote-Sensing Activities 

Remote-sensing data used by 

government systems shall pass 

geometric and radiometric quality 

checks defined in BIG/SNI standards. 

Requirement – SDI 

Metadata & Custodians 

Presidential Regulation (PR) No. 

39/2019 on Indonesia One-Data 

(SDI) 

Agencies must publish ISO 19115 

Metadata and appoint Data Custodians 

and Data Supervisors. 

Requirement – API 

Interoperability 

Ministry of Communication & 

Informatics Regulation No. 5/2020 

on Data Interoperability 

National Data-Exchange APIs must use 

REST/JSON with the prescribed 

schema and security headers. 
 

Constraint – Data 

Sovereignty 

GR No. 71/2019 on Electronic 

Systems and Transactions (PSTE) 

All public-sector data centers and 

disaster-recovery sites must be in 

Indonesian territory or in a government-

approved jurisdiction. 

Constraint – Security & 

Integrity 

Law No. 11/2008 on Electronic 

Information and Transactions, as 

amended by Law No. 19/2016 

Systems shall guarantee authentication, 

data integrity, and non-repudiation for 

electronic records. 

Requirement – SPBE 

Audit Compliance 

PR No. 95/2018 on E-Government 

(SPBE) and Ministry of 

Administrative & Bureaucratic 

Reform Regulation No. 59/2020 

PAN-RB conducts annual SPBE 

evaluations and issues an index 

measuring cross-agency data-exchange 

maturity. 

Primary crop-monitoring stakeholders, Kementan, BPS, and Bappenas, own the core business outputs; 

Kementan supplies field surveys and crop-class definitions, BPS fuses the harmonised maps into official 

statistics, and BAPPENAS aligns results with national policy planning and budgets. The Technical & Standards 

Enablers cluster, BRIN, BIG, and Kominfo, keeps the engine running: BRIN operates the ARD and 

preprocessing toolkit, BIG safeguards spatial reference and metadata standards, and Kominfo hosts the NARD 

and GovCloud environment plus the interoperability gateway. Oversight sits with Governance & Assurance, 

where PAN-RB audits cross-agency SPBE indicators and organisational maturity. Finally, Provincial 

Agricultural Offices feed the system with annual ground-truth samples, closing the data-quality loop from field 

to cloud. 

6. Conclusions 

The agricultural crop monitoring system developed through geoinformatics gives immediate access to 

agricultural data for strategic planning. Interviews with ministries/agencies showed that the data processing 

standards varied between institutions, although the pre-processing stage followed established norms. The three 

primary institutions have well-established management, but Bappenas needs to improve its system management. 

Field verification across three districts showed a low alignment between analytical results and actual field 

conditions. It indicates the need to improve analytical methods and enhance system accuracy. 

The research investigates four major crop monitoring systems in Indonesia, including SISCrop, Simotandi, 

IDMAI SIMURP, and Mixed Method, which show their strong capabilities and limitations. SISCrop shows 

effective SAR-based monitoring capabilities, yet its classification schemes show limited detail in their 
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categorization systems. Simotandi provides detailed classifications with multi-level analysis, but its temporal 

output inconsistencies create problems for system interoperability. The strategic monitoring capabilities of 

IDMAI SIMURP stand out through its multi-scale output features, although the system updates infrequently, 

while Mixed Method generates strong nationwide statistical reports, but offers less to offer real-time monitoring. 

The analysis confirms that standardization, along with policy integration, must address data collection gaps and 

classification discrepancies, and governance issues to create a unified crop monitoring system. 

The proposed unified data and policy framework presents a framework to unify crop monitoring systems in 

Indonesia, which addresses their current challenges. A centralized NARD should be established under this 

framework to merge system outputs from SISCrop, Simotandi, IDMAI SIMURP, and Mixed Method, enabling 

real-time API-based data sharing. The policy should require metadata and open data protocol enforcement and 

establish governance systems to enhance cross-agency collaboration. The unified approach seeks to boost data 

accessibility, together with operational efficiency and crop monitoring effectiveness in Indonesia. 

Future work should integrate artificial intelligence (AI) and Internet of Things (IoT) technologies into the 

unified framework to boost predictive abilities and real-time monitoring capabilities. AI technology could 

automate classification tasks, while IoT sensors would offer ground-level verification, which would enhance 

data precision. Studies should evaluate the socio-economic effects of system harmonization on food security 

through decision-making enhancement and resource efficiency improvement, and sustainable agricultural 

practice support. These advancements would establish Indonesia’s agricultural sector as a benchmark for using 

technology together with policy integration to combat worldwide food security problems. 
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